Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chin Herb Med ; 16(1): 143-150, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38375056

RESUMO

Objective: Angelicae Sinensis Radix (ASR, Danggui in Chinese), Cistanches Herba (CH, Roucongrong in Chinese), Ginseng Radix et Rhizoma (PG, Renshen in Chinese), and Panacis Quinquefolii Radix (PQ, Xiyangshen in Chinese), widely used as medicine and dietary supplement around the world, are susceptible to fungal and mycotoxin contamination. In this study, we aim to analyze their fungal community by DNA metabarcoding. Methods: A total of 12 root samples were collected from three main production areas in China. The samples were divided into four groups based on herb species, including ASR, CH, PG, and PQ groups. The fungal community on the surface of four root groups was investigated through DNA metabarcoding via targeting the internal transcribed spacer 2 region (ITS2). Results: All the 12 samples were detected with fungal contamination. Rhizopus (13.04%-74.03%), Aspergillus (1.76%-23.92%), and Fusarium (0.26%-15.27%) were the predominant genera. Ten important fungi were identified at the species level, including two potential toxigenic fungi (Penicillium citrinum and P. oxalicum) and eight human pathogenic fungi (Alternaria infectoria, Candida sake, Hyphopichia burtonii, Malassezia globosa, M. restricta, Rhizopus arrhizus, Rhodotorula mucilaginosa, and Ochroconis tshawytschae). Fungal community in ASR and CH groups was significantly different from other groups, while fungal community in PG and PQ groups was relatively similar. Conclusion: DNA metabarcoding revealed the fungal community in four important root herbs. This study provided an important reference for preventing root herbs against fungal and mycotoxin contamination.

2.
Int J Mol Sci ; 24(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37894762

RESUMO

Lonicerae Japonicae Flos (LJF) has been globally applied as an herbal medicine and tea. A number of reports recently revealed fungal and mycotoxin contamination in medicinal herbs. It is essential to analyze the fungal community in LJF to provide an early warning for supervision. In this study, the fungal community in LJF samples was identified through DNA metabarcoding. A total of 18 LJF samples were collected and divided based on the collection areas and processing methods. The results indicated that Ascomycota was the dominant phylum. At the genus level, Rhizopus was the most abundant, followed by Erysiphe and Fusarium. Ten pathogenic fungi were detected among the 41 identified species. Moreover, Rhizopus, Fusarium, and Aspergillus had lower relative abundances in LJF samples under oven drying than under other processing methods. This work is expected to provide comprehensive knowledge of the fungal community in LJF and a theoretical reference for enhanced processing methods in practical manufacturing.


Assuntos
Medicamentos de Ervas Chinesas , Lonicera , Micobioma , Plantas Medicinais , Código de Barras de DNA Taxonômico , Cromatografia Líquida de Alta Pressão , Extratos Vegetais , Lonicera/genética
3.
J Fungi (Basel) ; 8(8)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36012863

RESUMO

Fritillariae Cirrhosae Bulbus (FCB) is a well-known and precious traditional Chinese medicine with a medicinal history spanning thousands of years. In recent years, it has been reported that fungal and mycotoxin contamination influenced the safety and quality of FCB. It is essential to systematically study the fungal community for the early warning of fungal and mycotoxin contamination in this herb. A total of 15 FCB samples were collected from five provinces in China, and the fungal communities in the FCB samples were analyzed via amplifying the internal transcribed spacer 2 region through the Illumina Miseq PE300 platform. Furthermore, we compared the differences in fungal community in five groups based on collection areas. Results showed that Ascomycota (41.58-99.66%) and Mucoromycota (0-57.42%) were dominant at the phylum level. Eurotiomycetes (8.49-63.93%), Eurotiales (8.49-63.53%), and Aspergillaceae (8.49-63.51%) were the most abundant at the class, order, and family levels. Aspergillus (8.49-63.41%), Rhizopus (0-57.42%), Fusarium (0-22.81%), Cladosporium (0.16-9.14%), and Alternaria (0.06-17.95%) were the main genera in FCB samples. A total of 34 fungal taxa were identified at the species level, including five potentially toxigenic fungi namely Penicillium brevicompactum, P. citrinum, P. oxalicum, Trichothecium roseum, and Aspergillus restrictus. The differences in fungal community between the five groups were observed. Our findings provide references for the safe utilization and quality improvement of FCB.

4.
J Appl Microbiol ; 133(3): 1555-1565, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35692076

RESUMO

AIMS: Lycii Fructus (LF) is considered as a 'superfood' due to its health benefits and delicious tastes, which has gained popularity worldwide. However, LF is also a proper host for fungal growth due to its abundant nutrients. Fungal contamination seriously affects the quality and safety of LF and poses threats to consumer health. METHODS AND RESULTS: In this study, a total of 15 LF samples were collected from five provinces in China, and were divided into five groups based on the collection areas. Fungal contamination in LF was investigated by targeting the internal transcribed spacer 2 region using Illumina Miseq PE300 platform, and the differences of fungal community in groups based on collection areas were compared. Results showed that the fungal contamination was detected in all the 15 LF samples. Ascomycota, Dothideomycetes, Pleosporales and Pleosporaceae were dominant at the phylum, class, order and family levels, respectively. At the genus level, Alternaria, Cladosporium and Fusarium were the three dominant genera. In all, 24 fungal species were identified. Among which, two species, namely Penicillium oxalicum and Trichothecium roseum, were potentially toxigenic. CONCLUSIONS: All 15 LF samples were detected with fungal contamination. The differences of fungal community in LF samples collected from different areas were observed. DNA metabarcoding was demonstrated as an efficient method to monitor the fungal contamination in LF. SIGNIFICANCE AND IMPACT OF THE STUDY: This work comprehensively reveals the fungal diversity and composition in LF and provides early warning for potential mycotoxin contamination.


Assuntos
Ascomicetos , Micobioma , Micotoxinas , Ascomicetos/genética , Código de Barras de DNA Taxonômico/métodos , DNA Fúngico/genética , Frutas/microbiologia , Fungos/genética , Micotoxinas/análise
5.
Front Nutr ; 9: 883698, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634418

RESUMO

Crataegi Fructus, a medicinal and edible herb in China, has been considered a popular dietary supplement globally. It is used for the treatment of dyspepsia and chronic heart failure according to the Chinese Pharmacopoeia (2020). However, fungal contamination in Crataegi Fructus affects its quality and safety, thus preventing its global promotion. In this study, we comprehensively studied the fungal community in processed products of Crataegi Fructus by high-throughput sequencing. A total of 21 Crataegi Fructus samples were collected from five provinces in China, and the samples were divided into five groups based on collection areas, as well as into three groups based on processing methods. We then targeted the internal transcribed spacer 2 sequence through the Illumina Miseq PE300 platform to investigate fungal composition and diversity. Results showed that all 21 samples were detected with fungal contamination, and Ascomycota was dominant at the phylum level. In the groups based on collection areas, Dothideomycetes, Pleosporaceae, and Alternaria were dominant at the class, family, and genus levels, respectively. In the groups based on processing methods, Dothideomycetes, Aspergillaceae, and Alternaria were the most abundant at the class, family, and genus levels, respectively. Differences in fungal communities between various groups were also observed. Furthermore, a total of 115 species were identified, among which seven were potential toxigenic, namely, Trichothecium roseum, Alternaria tenuissima, Aspergillus carbonarius, Penicillium brevicompactum, Aspergillus fumigatus, Rhizopus microspores, and Pichia fermentans. In conclusion, this study reveals great fungal richness and diversity of Crataegi Fructus, providing references for the prevention and control of fungal contamination of Crataegi Fructus in practical production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA